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ABSTRACT
Truncated singular value decomposition is a reduced version of the singular value decomposition
in which only a few largest singular values are retained. This paper presents a novel perturbation
analysis for the truncated singular value decomposition for real matrices. First, we describe
perturbation expansions for the singular value truncation of order r. We extend perturbation
results for the singular subspace decomposition to derive the first-order perturbation expansion of
the truncated operator about amatrix with rank greater than or equal to r. Observing that the first-
order expansion can be greatly simplified when the matrix has exact rank r, we further show that
the singular value truncation admits a simple second-order perturbation expansion about a rank-
r matrix. Second, we introduce the first-known error bound on the linear approximation of the
truncated singular value decomposition of a perturbed rank-r matrix. Our bound only depends
on the least singular value of the unperturbed matrix and the norm of the perturbation matrix.
Intriguingly, while the singular subspaces are known to be extremely sensitive to additive noises,
the newly established error bound holds universally for perturbations with arbitrary magnitude.
Finally, we demonstrate an application of our results to the analysis of the mean squared error
associated with the TSVD-based matrix denoising solution.

1. Introduction
The singular value decomposition (SVD) is an invaluable tool for matrix analysis and the truncated singular value

decomposition (TSVD) offers a formal approach for a rank-restricted optimal approximation of matrices by replacing
the smallest singular values by zeros in the SVD of a matrix. TSVD has numerous applications in science, engineering,
and math with examples including linear system identification [1, 2], collaborative filtering [3, 4], low-rank matrix
denoising [5, 6], data compression [7], and numerical partial differential equations [8]. In addition, TSVD is well-
known for solving classical discrete ill-posed problems [9, 10]. This paper is concerned with the effects of errors on
the truncated singular value decomposition of a matrix.

Perturbation theory for the SVD studies the effect of variation in matrix entries on the singular values and the
singular vectors of a matrix. Using perturbation bounds or perturbation expansions, one can characterize the difference
between the SVD-related quantities associated with the perturbed matrix and those of the original matrix. The first
perturbation bound on singular values was given by Weyl [11] in 1912, stating that no singular value can be changed
by more than the spectral norm of the perturbation. Later, Mirsky [12] showed that Weyl’s inequality also holds for
any unitarily-invariant norm. Perturbation bounds for singular vectors are often established in the context of singular
subspace decomposition. In 1970, Davis and Kahan [13] introduced a fundamental bound on the distance between the
subspaces spanned by a group of eigenvectors and their perturbed versions based the ratio between the perturbation level
and the eigengap. This result is also referred as the so-called sinΘ theorem for symmetric matrices in the literature.
Shortly afterwards, Wedin [14] generalized part of this result to cover non-symmetric matrices using the singular
value decomposition, bounding changes in the left and right singular subspaces in terms of the singular value gap and
the perturbation magnitude. In a recent work, Cai and Zhang [15] further established separate matching upper and
lower bounds for the left and right singular subspaces. When the structure of the error is concerned, one may draw
interest in perturbation expansions to approximate the perturbed quantity as a function of the perturbation matrix.
As the perturbation decreases towards zero, the approximation is more accurate since the higher-order terms in the
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expansion become successively smaller. In 1973, Stewart [16] showed that there exists explicit expression of the
perturbed subspaces in the bases of the unperturbed subspaces, which can be leveraged to obtain error bounds for
certain characteristic subspaces associated with the SVD. This breakthrough result has started a long line of research
on perturbation expansions and error bounds for the SVD, including the work of Stewart [17], Sun [18], Li et al. [19],
Vaccaro [20], Xu [21], Liu et al. [22], and more recently, Gratton et al. [23]. Specifically, in [17], Stewart utilized the
bounding technique in [16] and obtained a second-order perturbation expansion for the square of the smallest singular
value of a matrix. In a different approach based on the theory of implicit functions, Sun [18] provided the first analytical
expression for the second-order perturbation expansion of simple non-zero singular values of a matrix. One of the first
significant results on perturbation expansion of singular subspaces was introduced by Li and Vaccaro in 1991. In
[19], the two authors analyzed a variety of subspace-based algorithms in array signal processing and developed the
first-order perturbation expansion for the signal and orthogonal subspaces of the rank-deficient data matrix. Later on,
Vaccaro [20] extended this result to the second-order perturbation expansion of these subspaces. A more fine-grained
analysis of the perturbation expansion for the individual singular vectors rather than the singular subspaces was given
by Liu et al. [22], uncovering the fact that the signal subspace has an impact on the first-order approximation of the
individual singular vectors, but not on the first-order approximation of the signal subspace spanned by these vectors.
We note that the aforementioned results on perturbation analysis of singular subspaces make an assumption that the
unperturbed matrix is rank-deficient, i.e., all singular values corresponding to one of the singular subspaces are zero. In
2002, Xu [21] relaxed this constraint by only requiring those singular values to be equally small. Recently, Gratton and
Tshimanga [23] were able to eliminate this constraint completely, presenting the second-order perturbation expansion
for singular subspaces with no restriction on their corresponding singular values.1 It is notable that the last result is
developed directly from those by Stewart in [16]. A more comprehensive description of the aforementioned results
is given in Section 3. Interested readers can also find in-depth surveys on matrix perturbation theory in [24, 25] and
references therein.

The aforementioned results on perturbation analysis of the SVD is the fulcrum for the perturbation analysis of the
TSVD. While the former characterizes the effect of perturbation on the singular values/singular subspaces of a matrix,
the later studies the combined effect (from both singular values and singular subspaces) on the resulting reduced-rank
matrix. Analyzing such an effect helps understand the local behavior of algorithms that utilize the low-rank optimal
approximation of matrices, such as SVD-based channel estimation methods in multi-input multi-output (MIMO) sys-
tems [26, 27, 28] and iterative hard-thresholding algorithms for low-rank matrix completion [4, 29, 30]. In a recent
work, Gratton and Tshimanga [23] presented a second-order expansion for the singular subspace decomposition and
make use of the result to deduce the second-order sensitivity of the TSVD solution to least-squares problems. How-
ever, since their application focuses on the expansion of the truncated pseudo-inverse rather than the TSVD itself, no
specific result in perturbation expansion of the TSVD is mentioned. In a different approach to analyzing the TSVD
operator, Feppon and Lermusiaux [31] studied the embedded geometry of the fixed-rank matrix manifold and charac-
terized the projection onto it as a smooth (C∞) map. Based on this geometric interpretation, the authors provided an
explicit expression for the directional derivative of the TSVD of order r at a certain matrix with rank greater than or
equal to r.2 On the one hand, the result directly suggests the first-order perturbation expansion of the TSVD. On the
other hand, the differential geometry-based approach, while offering a clear path for calculating the derivatives, does
not offer a direct recipe for obtaining the error bound on the first-order approximation or the higher order terms in the
expansion. At the time of writing this manuscript, we are not aware of any explicit expression of the second-order
derivative of the TSVD.

In this paper, we present a novel perturbation analysis of the truncated singular value decomposition. First, by
utilizing the perturbation expansion for singular subspaces in [23], we derive the first-order perturbation expansion of
the TSVD. Our result matches the result on the directional derivative of the TSVD in [31]. Furthermore, we extend our
analysis to study the second-order perturbation expansion and show that when the matrix has exact rank r, the TSVD of
order r admits a simple expression for its second-order expansion. To the best of our knowledge, this is the first explicit
result for the second-order perturbation expansion of the TSVD. Third, we establish an error bound on the first-order
approximation of the TSVD about a rank-r matrix. Our bound holds universally for any level (or magnitude) of the
perturbation. Finally, we demonstrate how the proposed perturbation expansions and error bounds can be applied to
study the mean squared error associated with the TSVD-based matrix denoising solution.

1The only constraint is the singular-value separation between the two subspaces.
2Despite the fact that Theorem 25 in [31] reads “greater than r”, both the proof of the theorem and the direct communication with the authors

(on September 17, 2020) suggest the result should also include the case of rank-r matrices.
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2. Notation and definitions
Throughout the paper, we use ‖ ⋅ ‖F and ‖ ⋅ ‖2 to denote the Frobenius norm and the spectral norm of a matrix,

respectively. Occasionally, ‖ ⋅ ‖2 is used on a vector to denote the Euclidean norm. Boldfaced symbols are reserved
for vectors and matrices. In addition, the s× t all-zero matrix is denoted by 0s×t and the s× s identity matrix is denoted
by Is. We also use esi to denote the i-th vector in the natural basis of ℝs. When understood clearly from the context,
the dimensions of vectors/matrices in the aforementioned notation may be omitted. As a slight abuse of notation, we
define the big O notation for matrices as follows.
Definition 1. Let � be some matrix and F (�) be a matrix-valued function of �. Then, for any positive number k,
F (�) = (‖�‖kF ) if there exists some constant 0 ≤ c <∞ such that

lim
�→0+

sup
‖�‖F=�

‖F (�)‖F
‖�‖kF

= c.

We emphasize the difference between the commonly used big O notation in the literature and the  notation used in
this manuscript. While the former requires c to be strictly greater than 0, our notation includes the case c = 0 to imply
both situations that F (�) approaches 0 at a rate either equal or faster than ‖�‖kF . Similarly, when used for a vector, we
replace the Frobenius norm by the Euclidean norm in Definition 1 to denote the corresponding quantity.

In the rest of the paper, unless otherwise specified, the symbol X is used to denote an arbitrary matrix in ℝm×n.
Here, without loss of generality, we assume that m ≥ n. The SVD of X is written as X = U�V T where � is a
m × n rectangular diagonal matrix with main diagonal entries are the singular values �1 ≥ �2 ≥ … ≥ �n ≥ 0. For
completeness, we denote the “ghost” singular values �n+1 = … = �m = 0 in the case m > n. Additionally, U ∈ ℝm×m

and V ∈ ℝn×n are orthogonal matrices such that UUT = UTU = Im and V V T = V TV = In. We note that the
left and right singular vectors of X are the columns of U and V , i.e., U = [u1, u2,… , um] and V = [v1, v2,… , vn].Thus,X can also be rewritten as the sum of rank-1matrices: X =

∑n
i=1 �iuiv

T
i . Next, we define the singular subspacedecomposition as follows.

Definition 2. Given 1 ≤ r < n, the singular subspace decomposition of X ∈ ℝm×n is given by:

X =
[

U1 U2
]

[

�1 0
0 �2

] [

V T
1
V T
2

]

= U1�1V T
1 + U2�2V T

2 , (1)

where
�1 = diag(�1,… , �r) ∈ ℝr×r, �2 =

[

diag(�r+1,… , �n)
0

]

∈ ℝ(m−r)×(n−r),

with the singular values in descending order, i.e., �1 ≥ �2 ≥… ≥ �n ≥ 0, and
U1 =

[

u1 … ur
]

∈ ℝm×r, U2 =
[

ur+1 … um
]

∈ ℝm×(m−r),

V1 =
[

v1 … vr
]

∈ ℝn×r, V2 =
[

vr+1 … vn
]

∈ ℝn×(n−r).

It is clear from Definition 2 that
U =

[

U1 U2
]

, � =
[

�1 0
0 �2

]

, V =
[

V1 V2
]

.

Here the columns of U1 and U2 (or V1 and V2) provide the bases for the column-space (or row-space) of X and its
orthogonal complement, respectively.
Definition 3. The orthonormal projectors onto the subspaces of X are defined as:

PU1 = U1U
T
1 =

r
∑

i=1
uiuTi , PU2 = U2U

T
2 = Im − PU1 =

m
∑

i=r+1
uiuTi ,

PV1 = V1V
T
1 =

r
∑

i=1
vivTi , PV2 = V2V

T
2 = In − PV1 =

n
∑

i=r+1
vivTi .
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Generally, matrices U1, U2, V1, and V2 are not unique. In particular, for simple non-zero singular values, the corre-
sponding left and right singular vectors are unique up to a simultaneous sign change. For repeated and positive singular
values, the corresponding left and right singular vectors are unique up to a simultaneous right multiplication with the
same orthogonal matrix. Finally, for zero singular values, the singular vectors can be any orthonormal bases of the left
and right null spaces of X. On the other hand, the singular subspaces spanned by the columns of U1, U2, V1, V2, andtheir corresponding projectors are unique provided that �r > �r+1 [9]. We are now in position to define the singular
value truncation.
Definition 4. The r-truncated singular value decomposition of X (r-TSVD) is defined as

r(X) =
r
∑

i=1
�iuivTi = U1�1V

T
1 . (2)

By Eckart-Young theorem [32], r(X) is the best least squares approximation of X by a rank-r matrix, with respect
to unitarily-invariant norms. Therefore, this operator is also known as the projection of X onto the non-convex set
of rank-r matrices. r(X) is unique if either �r > �r+1 or �r = 0. In the special case when X has exact rank r,
we have �r > �r+1 = … = �n = 0 and the projectors onto the subspaces of X, namely, PU1 ,PU2 ,PV1 , and PV2 areunique. However, the matrices U2 and V2 can take any orthonormal basis in Rm−r and Rn−r, respectively, as their
columns. Finally, for a rank-r matrix, we define the pseudo inverse of X as X† = U1�−11 V

T
1 . It is worth mentioning

that ‖X‖2 = �1 while ‖X†
‖2 = 1∕�r in this case.

3. Preliminaries
Two elemental bounds for singular values were given by Weyl [11] in 1912 and Mirsky [12] in 1960:

Proposition 1. Let � ∈ ℝm×n be a perturbation of arbitrary magnitude. Denote X̃ = X + � with singular values
�̃1 ≥ �̃2 ≥… ≥ �̃n ≥ 0. Then,

• Weyl’s inequality: |
|

�̃i − �i|| ≤ ‖�‖2, for i = 1,… , n,

• Mirsky’s inequality:
√

∑n
i=1(�̃i − �i)2 ≤ ‖�‖F .

Proposition 1 asserts that the changes in the singular values can be bounded using only the norm of the perturbation. By
leveraging the specific values of the entries of the perturbation matrix, the behavior of singular values under perturba-
tions can be described more precisely through perturbation expansions. In [17], Stewart showed that if �n is non-zeroand distinct from other singular values of X, then its corresponding perturbed singular value can be expressed by

�̃n = �n + uTn �vn +(‖�‖2). (3)
It is later known that the result in (3) also holds for any simple non-zero singular values [25]. In another approach, Sun
[18] derived a second-order perturbation expansion for simple non-zero singular values. For a simple zero singular
value, Stewart [17] claimed that deriving a perturbation expansion is non-trivial and proposed a second-order approx-
imation for �̃2n instead. Most recently, a generalization of (3) to a set of singular values that is well separated from the
rest is proved in [33].

While the singular values of a matrix are proven to be quite stable under perturbations, the singular vectors, es-
pecially those correspond to a cluster of singular values, are extremely sensitive. It is therefore natural to bound the
perturbation error based on the subspace spanned by the singular vectors. Consider the singular subspace decomposi-
tion in Definition 2. We define the singular gap as the smallest distance between a singular value in �1 and a singular
value in �2. When the spectral norm of the perturbation is smaller than this gap, Wedin’s sinΘ theorem [14] provides
an upper bound on the distances between the left and right singular subspaces and their corresponding perturbed coun-
terparts in terms of the singular gap and the Frobenius norm of the perturbation. Furthermore, Stewart [16] showed
that there exist explicit expressions of the perturbed subspaces in the bases of the unperturbed subspaces, which can
be leveraged to obtain error bounds for certain characteristic subspaces associated with the SVD. Let us rephrase this
result in the following proposition.
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Proposition 2. (Rephrased from Theorem 2.1 in [23], which is based on Theorem 6.4 in [16]) In addition to the setting
in Definition 2, assume that �r > �r+1. For a perturbation � ∈ ℝm×n, denote the singular subspace decomposition of
X̃ = X + � by

X̃ = Ũ �̃Ṽ T =
[

Ũ1 Ũ2
]

[

�̃1 0
0 �̃2

] [

Ṽ T
1
Ṽ T
2

]

.

Let us partition UT�V conformally with U and V in the form

UT�V =
[

UT
1 �V1 UT

1 �V2
UT
2 �V1 UT

2 �V2

]

=
[

E11 E12
E21 E22

]

= E. (4)

If

‖�‖2 <
�r − �r+1

2
, (5)

then there must exist unique matrices Q ∈ ℝ(m−r)×r, P ∈ ℝ(n−r)×r whose norms are in the order of ‖�‖F such that

Q(�1 + E11) + (�2 + E22)P = −E21 −QE12P , (6a)
(�1 + E11)P T +QT (�2 + E22) = E12 +QTE21P T . (6b)

Moreover, using

Û1 = (U1 − U2Q)(Ir +QTQ)−1∕2, (7a)
Û2 = (U2 + U1QT )(Im−r +QQT )−1∕2, (7b)
V̂1 = (V1 + V2P )(Ir + P TP )−1∕2, (7c)
V̂2 = (V2 − V1P T )(In−r + PP T )−1∕2, (7d)

we can define semi-orthogonal matrices Û1, Û2, V̂1, and V̂2 satisfying ÛT
1 Û2 = 0 and V̂ T

1 V̂2 = 0, which provide
bases to the same unique subspaces of Ũ1, Ũ2, Ṽ1, and Ṽ2, respectively, i.e., PÛ1 = PŨ1 , PÛ2 = PŨ2 , PV̂1 = PṼ1 , and
PV̂2 = PṼ2 .

It is important to note that Û1, Û2, V̂1, and V̂2 may differ from Ũ1, Ũ2, Ṽ1, and Ṽ2, respectively. However, their
corresponding subspaces are identical. This result will be useful later when replacing PŨ1 and PṼ1 in the following
version of the r-TSVD r(X̃) = PŨ1X̃PṼ1 with PÛ1 and PV̂1 . The substitution allows us to write an explicit expressionof the r-TSVD using� and terms that are in order of ‖�‖F such asQ and P . Equation (6) also enables the perturbation
expansion of the SVD through the coefficient matrices Q and P . In 1991, Li and Vaccaro [19] considered a special
case of rank-r matrices (�2 = 0) and introduced the first-order perturbation expansion for Q and P as a method to
analyze the performance of subspace-based algorithms in array signal processing. Later on, Vaccaro [20] extended their
approach to study the second-order perturbation expansion for the singular subspace decomposition. A more general
result in this approach was proposed by Xu [21] in 2002, through relaxing the constraint �2 = 0 to �T2 �2 = �2I , for
small � ≥ 0. It was not until recently the second-order analysis with no restriction on �2 was provided by Gratton [23].We summarize this result on second-order perturbation expansion for Q and P as follows.
Proposition 3. Given the setting in Proposition 2. Then

vec(Q) = �−10 �1 +�
−1
0 �2 −�

−1
0 �1�

−1
0 �1 +(‖�‖3F ), (8)

where

�0 = �21 ⊗ Im−r − Ir ⊗ (�2�T2 ), �1 = (�1ET11 + E11�1)⊗ Im−r − Ir ⊗ (�2ET22 + E22�
T
2 ),

�1 = −vec(�2ET12 + E21�1), �2 = −vec(E22ET12 + E21E
T
11),
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and

vec(P ) = 	−1�1 +	−10 �2 −	
−1
0 	1	

−1
0 �1 +(‖�‖3F ), (9)

where

	0 = �21 ⊗ Im−r − Ir ⊗ (�T2 �2), 	1 = (�1E11 + ET11�1)⊗ Im−r − Ir ⊗ (�T2E22 + E
T
22�2),

�1 = −vec(�T2E21 + E
T
12�1), �2 = −vec(ET22E21 + E

T
12E11).

Corollary 1. Suppose in Proposition 2, X has rank r, i.e., �2 = 0. Then

Q = −E21�−11 − E22ET12�
−2
1 + E21�−11 E11�

−1
1 +(‖�‖3F ),

P = ET12�
−1
1 + ET22E21�

−2
1 − ET12�

−1
1 E

T
11�

−1
1 +(‖�‖3F ).

Finally, we devote the rest of this section to discuss condition (5) in Proposition 2. As mentioned earlier, the
singular subspaces corresponding to Ũ1, Ũ2, Ṽ1, and Ṽ2 are unique if and only if �̃r > �̃r+1. By Weyl’s inequality (see
Proposition 1), we have |

|

�̃r+1 − �r+1|| ≤ ‖�‖2. Since ‖�‖2 < (�r − �r+1)∕2 and ||�̃r+1 − �r+1|| ≥ �̃r+1 − �r+1, one canfurther upper bound the r + 1-th perturbed singular value by

�̃r+1 < �r+1 +
�r − �r+1

2
=
�r + �r+1

2
. (10)

Following a similar argument, |
|

�̃r − �r|| ≤ ‖�‖2 leads to

�̃r > �r −
�r − �r+1

2
=
�r + �r+1

2
. (11)

It follows from (10) and (11) that the gap between �̃r and �̃r+1 is strictly greater than 0:

�̃r+1 <
�r + �r+1

2
< �̃r. (12)

As mentioned in [23], condition (5) is more restrictive, but simpler, than the original condition specified in [16]. Based
on the aforementioned preliminaries, we are ready to present our results.

4. Perturbation expansions for the r-TSVD
This section presents perturbation expansion results for the r-TSVD operator. In order to guarantee the uniqueness

of the expansions, we assume throughout the section that the r-th and r + 1-th singular values are well-separated and
the perturbation � has small magnitude relative to X.

Let us beginwith a non-trivial result on the first-order perturbation expansion of the r-TSVD. The result is consistent
with Theorem 25 from [31], in which Feppon and Lermusiaux utilized differential geometry to derive a closed-form
expression for the directional derivative of the r-TSVD. Using tools from perturbation analysis, we are able to obtain
the same result on the first-order perturbation expansion of r. The additional benefit of the technique used here, as
can be seen later, is that it can be leveraged to further derive the second-order perturbation expansion and the bound
on the approximation error of the first-order expansion about a rank-r matrix.
Theorem 1. Assume �r > �r+1. Then, for some perturbation � ∈ ℝm×n such that ‖�‖2 <

�r−�r+1
2 , the first-order

perturbation expansion of the r-TSVD about X is uniquely given by3

r(X + �) = r(X) + � − PU2�PV2 +
r
∑

i=1

n
∑

j=r+1

( �2j
�2i − �

2
j

(uiuTi �vjv
T
j + uju

T
j �viv

T
i )

+
�i�j

�2i − �
2
j

(uivTi �
T ujvTj + ujv

T
j �

T uivTi )
)

+(‖�‖2F ). (13)
3We recall that throughout this manuscript we assume m ≥ n.
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The proof of Theorem 1 is based on perturbation expansions of the coefficient matrices Q and P in Proposition 3.
Interested readers are encouraged to find out the details in Appendix B. As mentioned earlier, the first-order term in
(13) is equivalent to the directional derivative given by Theorem 25 in [31]:

(�r(X) = PU2�PV1 + PU1�

+
r
∑

i=1

m
∑

j=r+1

�j
�2i − �

2
j

(

(

�iuTj �vi + �ju
T
i �vj

)

ujvTi +
(

�juTj �vi + �iu
T
i �vj

)

uivTj

)

. (14)

It is worthwhile to mention that we arrive at the first-order perturbation expansion in Theorem 1 while working inde-
pendently on the error bounds for TSVD (see Section 5).

Note that the condition ‖�‖2 < (�r − �r+1)∕2 guarantees a non-zero gap between the r-th and the r+1-th singularvalues of the perturbed matrix (see (12)), and hence guarantees r(X +�) on the LHS of (13) is unique. At the same
time, each term on the RHS of (13) is well-defined due to the uniqueness of singular subspaces associated with each
group of singular values of X. The term � − PU2�PV2 can be viewed as the projection of � onto the tangent space
of the manifold of rank-r matrices [34]. On the other hand, the double summation stems from the curvature of this
manifold whenX does not lie on it (with rank greater than r). To demonstrate the first-order expansion in Theorem 1,
let us consider the following examples.
Example 1. Consider the matrix X with its SVD as follows:

X = 1
2

⎡

⎢

⎢

⎢

⎣

4 −4 7
0 0 −9
4 8 1
8 4 −1

⎤

⎥

⎥

⎥

⎦

=

⎛

⎜

⎜

⎜

⎝

1
2

⎡

⎢

⎢

⎢

⎣

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

⋅

⎡

⎢

⎢

⎢

⎣

6 0 0
0 6 0
0 0 3
0 0 0

⎤

⎥

⎥

⎥

⎦

⋅
⎛

⎜

⎜

⎝

1
3

⎡

⎢

⎢

⎣

1 2 2
2 1 −2
−2 2 −1

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

T

. (15)

In this example, note that �1 = �2 > �3. From Definition 4, we have

2(X) =
⎛

⎜

⎜

⎜

⎝

1
2

⎡

⎢

⎢

⎢

⎣

−1 1
1 −1
1 1
1 1

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

⋅
[

6 0
0 6

]

⋅
⎛

⎜

⎜

⎝

1
3

⎡

⎢

⎢

⎣

1 2
2 1
−2 2

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

T

=

⎡

⎢

⎢

⎢

⎣

1 −1 4
−1 1 −4
3 3 0
3 3 0

⎤

⎥

⎥

⎥

⎦

. (16)

In addition,

PU2 =
1
2

⎡

⎢

⎢

⎢

⎣

1 1 0 0
1 1 0 0
0 0 1 −1
0 0 −1 1

⎤

⎥

⎥

⎥

⎦

, PV2 =
1
9

⎡

⎢

⎢

⎣

4 −4 −2
−4 4 2
−2 2 1

⎤

⎥

⎥

⎦

. (17)

For the perturbation

� = 3
200

⎡

⎢

⎢

⎢

⎣

3 3 −9
−3 −9 3
7 5 −5
−1 7 −7

⎤

⎥

⎥

⎥

⎦

, with ‖�‖F = 0.2985 < � = 1.5, (18)

(17) leads to

PU2�PV2 =
3
200

⎡

⎢

⎢

⎢

⎣

2 −2 −1
2 −2 −1
2 −2 −1
−2 2 1

⎤

⎥

⎥

⎥

⎦

. (19)

Now the double summation in (13) can be represented as

G(�) = 1
3
(u1uT1 �v3v

T
3 + u3u

T
3 �v1v

T
1 ) +

2
3
(u1vT1 �

T u3vT3 + u3v
T
3 �

T u1vT1 )
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+ 1
3
(u2uT2 �v3v

T
3 + u3u

T
3 �v2v

T
2 ) +

2
3
(u2vT2 �

T u3vT3 + u3v
T
3 �

T u2vT2 ).

While the singular vectors of X are not unique (due to �1 = �2), the singular subspaces of X are unique. Therefore,
by representing G(�) as

G(�) = 1
3
(u1uT1 + u2u

T
2 )�v3v

T
3 +

1
3
u3uT3 �(v1v

T
1 + v2v

T
2 )

+ 2
3
(u1vT1 + u2v

T
2 )�

T u3vT3 +
2
3
u3vT3 �

T (u1vT1 + u2v
T
2 ), (20)

we observe that G(�) is well-defined since u1uT1 + u2uT2 , u3uT3 , v1vT1 + v2vT2 , v3vT3 , u1vT1 + u2vT2 , and u3vT3 are all
unique quantities, namely,

u1uT1 + u2u
T
2 = PU1 =

1
2

⎡

⎢

⎢

⎢

⎣

1 −1 0 0
−1 1 0 0
0 0 1 1
0 0 1 1

⎤

⎥

⎥

⎥

⎦

, u3uT3 =
1
4

⎡

⎢

⎢

⎢

⎣

1 1 −1 1
1 1 −1 1
−1 −1 1 −1
1 1 −1 1

⎤

⎥

⎥

⎥

⎦

,

v1vT1 + v2v
T
2 = PV1 =

1
9

⎡

⎢

⎢

⎣

5 4 2
4 5 −2
2 −2 8

⎤

⎥

⎥

⎦

, v3vT3 = PV2 =
1
9

⎡

⎢

⎢

⎣

4 −4 −2
−4 4 2
−2 2 1

⎤

⎥

⎥

⎦

,

u1vT1 + u2v
T
2 =

1
18

⎡

⎢

⎢

⎢

⎣

3 −3 12
−3 3 −12
9 9 0
9 9 0

⎤

⎥

⎥

⎥

⎦

, u3vT3 =
1
6

⎡

⎢

⎢

⎢

⎣

2 −2 −1
2 −2 −1
−2 2 1
2 −2 −1

⎤

⎥

⎥

⎥

⎦

. (21)

Substituting the values of the 6 aforementioned terms in (21) and the value of � in (18) back into (20), we obtain

G(�) = 1
200

⎡

⎢

⎢

⎢

⎣

−6 3 0
2 −5 −4
−2 5 4
−6 3 0

⎤

⎥

⎥

⎥

⎦

. (22)

The substitution of (16), (18), (19), and (22) into (13) yields

2(X + �) =
⎡

⎢

⎢

⎢

⎣

0.9850 −0.9100 3.8800
−1.0650 0.8700 −3.9600
3.0600 3.1300 −0.0400
2.9850 3.0900 −0.1200

⎤

⎥

⎥

⎥

⎦

+(‖�‖2F ). (23)

On the other hand, running a simple numerical evaluation by Definition 4, we can compute 2(X + �) and obtain

2(X + �) =
⎡

⎢

⎢

⎢

⎣

0.9840 −0.9088 3.8792
−1.0632 0.8689 −3.9615
3.0650 3.1284 −0.0403
2.9870 3.0890 −0.1213

⎤

⎥

⎥

⎥

⎦

.

The approximation error of the first-order perturbation expansion has magnitude of 0.0043, which is much smaller
than the approximation error of the zero-order expansion, i.e., ‖2(X + �) − 2(X)‖F = 0.3016.
Example 2. Let us consider a counter-example in which the condition ‖�‖2 < (�r − �r+1)∕2 is not satisfied. In
particular, by setting

X =

⎡

⎢

⎢

⎢

⎣

2 0 0
0 2 0
0 0 1
0 0 0

⎤

⎥

⎥

⎥

⎦

, � =
⎡

⎢

⎢

⎢

⎣

0.1 0 0
0 −0.5 0
0 0 0.5
0 0 0

⎤

⎥

⎥

⎥

⎦

,
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following similar calculation in Example 1 would yield

2(X + �) =
⎡

⎢

⎢

⎢

⎣

2.1 0 0
0 1.5 0
0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎦

+(‖�‖2F ).

On the other hand, the 2-TSVD of X + � can either be

2(X + �) =
⎡

⎢

⎢

⎢

⎣

2.1 0 0
0 1.5 0
0 0 0
0 0 0

⎤

⎥

⎥

⎥

⎦

or 2(X + �) =
⎡

⎢

⎢

⎢

⎣

2.1 0 0
0 0 0
0 0 1.5
0 0 0

⎤

⎥

⎥

⎥

⎦

.

It can be seen that our first-order approximation is no longer accurate if the later truncation is considered.
One immediate consequence of Theorem 1 is when the matrix has exact rank r, the double summation on the RHS

of (13) vanishes since �j = 0 for all j > r. Thus, we obtain a simple expression for the first-order expansion of r(⋅)about a rank-r matrix.
Corollary 2. Let X ∈ ℝm×n be a rank-r matrix. Then, for some perturbation � ∈ ℝm×n such that ‖�‖2 < �r∕2, the
first-order perturbation expansion of the r-TSVD about X is uniquely given by

r(X + �) = X + � − PU2�PV2 +(‖�‖2F ). (24)
We observe that while the first-order term depends on the perturbation � and the two projections PU2 and PV2 , it isindependent of the singular values of X. Motivated by the simple result in Corollary 2, we further study the second-
order perturbation expansion of the r-TSVD about a rank-r matrix in the following theorem.
Theorem 2. Let X ∈ ℝm×n be a rank-r matrix. Then, for some perturbation � ∈ ℝm×n such that ‖�‖2 < �r∕2, the
second-order perturbation expansion of the r-TSVD about X is uniquely given by

r(X + �) = X + � − PU2�PV2 +X
†�TPU2�PV2 + PU2�PV2�

TX† + PU2�(X
†)T�PV2 +(‖�‖3F ). (25)

The proof of Theorem 2 is given in Appendix C. The theorem states that r(X + �) admits a simple second-order
approximation that only depends on PU2 , PV2 , and X† in addition to X and � themselves. Notice the dependence of
the three second-order terms on the RHS of (25) on the pseudo inverse of X indicates the first-order approximation
is sensitive to the least singular value of X. In the next section, we shall prove that the error bound for the first-order
approximation of r(X + �) depends linearly on 1∕�r.
Remark 1. The differentiability of r at a rank-r matrix, as shown in Corollary 2 and Theorem 2, matches with the
well-known result in differential geometry that a projection onto the base of the normal bundle of any smooth manifold
is a smooth map on the tubular neighborhood [35]. In particular, r is a classic smooth (C∞) map in a small open
neighborhood containing the manifold of rank-r matrices.
Remark 2. It is known that the r-TSVD is differentiable at any point (matrix) with a non-zero gap between the r-th
and r + 1-th singular values and hence, admits a first-order perturbation expansion about such point. While our result
in Theorem 2 only considers a special case of rank-r matrices, we suspect there exists a second-order perturbation
expansion of the r-TSVD about a matrix X with rank greater than r. However, given the complexity of the first-order
expansion, it certainly requires more elaborate work. We leave this as a future research direction.

5. Error bounds for the r-TSVD
This section introduces upper bounds on the difference between the r-TSVD and its first-order approximation.

While in Section 4 the perturbation expansions are derived under the assumption that ‖�‖2 < (�r − �r+1)∕2, the errorbounds in this section do not require this constraint and indeed they hold for�with arbitrary magnitude. It is important
Vu et. al.: Preprint submitted to Elsevier Page 9 of 31
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to note that, without the constraint on the level of the perturbation, r(X + �) may not be unique since there is no
guarantee that �̃r > �̃r+1. The value of r(X + �) in case �̃r = �̃r+1 depends on the choice of the singular subspace
decomposition of X̃ = X + � (see Definition 2). Nevertheless, we shall provide error bounds that hold independent
of the choice of decomposition.

Let us consider the first-order expansion in (24). One trivial bound on the approximation error can be derived as
follows (see details in Appendix D):
Lemma 1. Let X ∈ ℝm×n be a rank-r matrix. For any � ∈ ℝm×n and any valid choice of subspace decomposition of
X + �, we have

‖r(X + �) − (X + � − PU2�PV2 )‖F ≤ ‖X‖F + 2‖�‖F .

Lemma 1 suggests that for large�, the approximation error grows at most linearly in the norm of�. However, for small
�, the aforementioned bound is not tight since Corollary 2 implies the error should be in the order of ‖�‖2F . In order
to tighten the bound for the small perturbation, we need to develop a different approach that is more meticulous about
intermediate inequalities. We state our main result regarding the global error bound on the first-order approximation
of the r-TSVD as follows.
Theorem 3. Let X ∈ ℝm×n be a rank-r matrix. Then, for any � ∈ ℝm×n and any valid choice of subspace decompo-
sition of X + �, the first-order Taylor expansion of the r-TSVD about X is given by

r(X + �) = X + � − PU2�PV2 +RX(�), (26)
where there exists a universal constant 1 + 1∕

√

2 ≤ c ≤ 4(1 +
√

2) such that

‖RX(�)‖F ≤ c
�r
‖�‖2F . (27)

Furthermore, the following inequality holds

‖RX(�)‖F ≤ 2(1 +
√

2)‖�‖F min
{

2
�r
‖�‖F , 1

}

. (28)

The proof of Theorem 3 is given in Appendix E. It is noticeable that the first three terms on the RHS of (26) are
uniquely given by the rank-r singular subspace decomposition of X. On the contrary, the LHS may not be unique
(e.g., when �̃r = �̃r+1) and hence, so does the residual RX(�). However, it is interesting to note that the theorem
makes no assumption on the norm of �, as well as the choice of the r-TSVD of X + �. The bound on the residual
(or the remainder) in Theorem 3 is similar to the Lagrange error bound in univariate first-order Taylor series. It not
only asserts that the approximation error can grow no faster than a quadratic rate but also determines the constant
attached to ‖�‖2F . Furthermore, the bound depends only on the �r and ‖�‖F , as one may expect from the second-
order perturbation expansion of the r-TSVD in Theorem 2.
Remark 3. We conjecture but are unable to prove that the lower bound on c is tight, i.e., c = 1+ 1∕√2. Partial result
in this direction regarding � of certain structure is also given in the proof of Theorem 3. In our numerical experiment,
we ran multiple optimization procedures to maximize the quantity �r‖RX(�)‖F ∕‖�‖2F with respect to � and obtained
the same constant 1 + 1∕√2.
The bound in (28) suggests an interesting behavior of the residual RX(�). When the perturbation is small, the error
depends quadratically on the magnitude of the perturbation and inversely proportional to the least singular value ofX.
In particular, as �r approaches 0, the first-order approximation becomes less accurate. On the contrary, for large �, the
upper bound is linear in the norm of � and independent of �r. Compared to the bound in Lemma 1, we observe that
the dependence on X is eliminated. Asymptotically as ‖�‖F approaches∞, the simple bound in the lemma becomes
tighter than the bound in (28).

We conclude this section by describing the behavior of the residual term for small perturbations. While it is
challenging to establish a tight bound on ‖RX(�)‖F (as a function of ‖�‖F ) for large �, it is possible to project
the first-order approximation error for small perturbation based on the knowledge of the second-order perturbation
expansion of the r-TSVD (see Theorem 2). We provide the result in the following theorem, with the proof given in
Appendix F.
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Theorem 4. Asymptotically as ‖�‖F approaches 0, the norm of the residual term in Theorem 3 can be upper-bounded
tightly by

lim
�→0+

sup
‖�‖F=�

‖RX(�)‖F
‖�‖2F

= 1

�r
√

3
.

Remark 4. While Theorem 1 provides the first-order perturbation expansion of the r-TSVD about an arbitrary matrix
X with �r > �r+1 ≥ 0, extending Theorems 3 and 4 to that case remains to be one of our future research directions
due to the difficulty of bounding the double summation in (13).

6. An application to performance analysis in matrix denoising
This section presents an application of our result to the performance analysis of the TSVD for matrix denoising.

In many applications such as image denoising [36], multi-input multi-output (MIMO) channel estimation [26], collab-
orative filtering [37], low-rank procedures are often motivated by the following statistical model:

X̃ = X + �,

where X ∈ ℝm×n is the unknown matrix with rank r ≤ min(m, n) and � is a random matrix whose entries are i.i.d.
normally distributed with zero mean and �2-variance, i.e., Δij ∼  (0, �2) for i = 1,… , m and j = 1,… , n. To
denoise the data, the TSVD is applied to the noisy matrix X̃ to obtain the following estimator:

X̂ = r(X̃).

We would like to assess the mean squared error (MSE) of this estimator using our perturbation analysis of the TSVD.
As a baseline for our analysis, we consider the MSE of the noisy matrix X̃:

E
[

‖X̃ −X‖

2
F
]

= E
[

‖�‖2F
]

=
m
∑

i=1

n
∑

j=1
E
[

Δ2ij
]

= �2mn. (29)

Next, we study the MSE of the estimator X̂, i.e., E[‖X̂ −X‖

2
F ]. To the best of our knowledge, there exists no closed-form expression of this quantity due to the non-linearity of the truncated singular value operator. In the following, we

provide the first-order approximation, the second-order approximation, and the upper bound for E[‖X̂ −X‖

2
F ] basedon the results presented in this paper.

1. The first-order approximation:
Let X̂1 = X + � − PU2�PV2 be the first-order approximation of X̂. We have

E
[

‖X̂1 −X‖

2
F

]

= E
[

‖� − PU2�PV2‖
2
F

]

= E
[

‖(Imn − PV2 ⊗ PU2 ) vec(�)‖
2
2

]

(by Lemma 8-2)
= E

[

(

vec(�)
)T (Imn − PV2 ⊗ PU2 )

T (Imn − PV2 ⊗ PU2 ) vec(�)
]

. (30)
Using the fact that PU2 and PV2 are projection matrices, Imn − PV2 ⊗ PU2 is also a projection matrix, and hence,
(Imn − PV2 ⊗ PU2 )

T (Imn − PV2 ⊗ PU2 ) = Imn − PV2 ⊗ PU2 . Thus, (30) can be further simplified as

E
[

‖X̂1 −X‖

2
F

]

= E
[

(

vec(�)
)T )(Imn − PV2 ⊗ PU2 ) vec(�)

]

= E
[

tr
(

(Imn − PV2 ⊗ PU2 ) vec(�)
(

vec(�)
)T )

]

(by the cyclic property of the trace)
= tr

(

(Imn − PV2 ⊗ PU2 )E
[

vec(�)
(

vec(�)
)T ]

)

.
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Since Δij i.i.d.∼  (0, �2), E[vec(�)(vec(�))T ] = �2Imn. Thus,

E
[

‖X̂1 −X‖

2
F

]

= �2 tr(Imn − PV2 ⊗ PU2 )

= �2 tr(Imn) − tr(PV2 ) tr(PU2 )

= �2r(m + n − r), (31)
where the second equality uses Lemma 8-4 and the third equality stems from the fact that tr(PU2 ) = tr(U2UT

2 ) =
tr(UT

2 U2) = tr(Im−r) = m − r (and similarly tr(PV2 ) = n − r).
2. The second-order approximation:

Let X̂2 = X +�− PU2�PV2 +X
†�TPU2�PV2 + PU2�PV2�

TX† + PU2�(X
†)T�PV2 be the second-order approx-

imation of X̂. We have
E
[

‖X̂2 −X‖

2
F

]

= E
[

‖� − PU2�PV2 +X
†�TPU2�PV2 + PU2�PV2�

TX† + PU2�(X
†)T�PV2‖

2
F

]

= E
[

‖� − PU2�PV2‖
2
F
]

+ E
[

‖X†�TPU2�PV2 + PU2�PV2�
TX† + PU2�(X

†)T�PV2‖
2
F
]

+ E
[

2 tr
(

(� − PU2�PV2 )
T (X†�TPU2�PV2 + PU2�PV2�

TX† + PU2�(X
†)T�PV2 )

)

]

. (32)

Since Δij i.i.d.∼  (0, �2), the expected value of the third-order term on the RHS of (32) is zero, i.e.,

E
[

2 tr
(

(� − PU2�PV2 )
T (X†�TPU2�PV2 + PU2�PV2�

TX† + PU2�(X
†)T�PV2 )

)

]

= 0.

Therefore,
E
[

‖X̂2 −X‖

2
F

]

= E
[

‖� − PU2�PV2‖
2
F
]

+ E
[

‖X†�TPU2�PV2 + PU2�PV2�
TX† + PU2�(X

†)T�PV2‖
2
F
]

.

Since the first term on the RHS is given by (31), we proceed with the calculation of the second term on the RHS,
i.e., E[‖X†�TPU2�PV2 + PU2�PV2�

TX† + PU2�(X
†)T�PV2‖

2
F
]. Since X† = PU1X

†PV1 , the three terms inside
the norm are orthogonal to each other, i.e., their inner products are zero. Hence,

‖X†�TPU2�PV2 + PU2�PV2�
TX† + PU2�(X

†)T�PV2‖
2
F

= ‖X†�TPU2�PV2‖
2
F + ‖PU2�PV2�

TX†
‖

2
F + ‖PU2�(X

†)T�PV2‖
2
F . (33)

Using the cyclic property of the trace and the idempotence property of PV2 , the first term on the RHS of (33) can
be computed as

‖X†�TPU2�PV2‖
2
F = tr

(

X†�TPU2�PV2PV2�
TPU2�(X

†)T
)

= tr
(

�TPU2�PV2�
TPU2�(X

†)TX†).

Similarly, one can compute the second and the third terms on the RHS of (33), then taking the expectation to obtain
E
[

‖X†�TPU2�PV2 + PU2�PV2�
TX† + PU2�(X

†)T�PV2‖
2
F
]

= E
[

tr
(

�TPU2�PV2�
TPU2�(X

†)TX†)
]

+ E
[

tr
(

�TX†(X†)T�PV2�
TPU2�PV2

)

]

+ E
[

tr
(

�(X†)T�PV2�
TX†�TPU2

)

]

. (34)
Next, to compute the three terms on the RHS of (34), we consider the following lemma:
Lemma 2. Assume the matrices A,B,C , and D in each of the following statements are of compatible dimensions
such that the matrix product is valid. Then,
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(a) E
[

tr(�TA�B�TC�D)
]

= tr(ATC) tr(BTD) + tr(AC) tr(B) tr(D) + tr(BD) tr(A) tr(C)),
(b) E

[

tr(�A�B�TC�TD)
]

= tr(ATBCTD) + tr(DCBA) + tr(AC) tr(B) tr(D).

The proof of Lemma 2 follows a similar derivation of the fourth-moment properties in [38] and hence is omitted.
Applying Lemma 2 to the RHS of (34) and using the orthogonality between X† and PU2 ,PV2 , we obtain

E
[

‖X†�TPU2�PV2 + PU2�PV2�
TX† + PU2�(X

†)T�PV2‖
2
F
]

= tr(PU2 ) tr(PV2 ) tr((X
†)TX†) + tr(PV2 ) tr(X

†(X†)T ) tr(PU2 ) + tr((X
†)TX†) tr(PV2 ) tr(PU2 )

= 3�4(m − r)(n − r)‖X†
‖

2
F , (35)

where the last equality stems from tr(PU2 ) = m− r and tr(PV2 ) = n− r. Substituting (31) and (35) into (32) yields
E
[

‖X̂2 −X‖

2
F

]

= �2r(m + n − r) + 3�4(m − r)(n − r)‖X†
‖

2
F . (36)

3. The upper bound:
From Corollary 2, we have

X̂ −X = r(X̃) −X = � − PU2�PV2 +RX(�).

Hence, by the triangle inequality, it holds that
‖X̂ −X‖F ≤ ‖� − PU2�PV2‖F + ‖RX(�)‖F .

Taking the expectation of the squared norm yields
E
[

‖X̂ −X‖

2
F

]

≤ E
[(

‖� − PU2�PV2‖F + ‖RX(�)‖F
)2]

. (37)
Applying Minkowski inequality [39], we can bound the RHS of (35) as

E
[(

‖� − PU2�PV2‖F + ‖RX(�)‖F
)2]

≤
(
√

E
[

‖� − PU2�PV2‖
2
F

]

+
√

E
[

‖RX(�)‖2F
]

)2
. (38)

From (28), we can bound E
[

‖RX(�)‖2F
]

by

E
[

‖RX(�)‖2F
]

≤ E
[

(

2(1 +
√

2)min
{ 2
�r
‖�‖2F , ‖�‖F

})2
]

≤ min
{

(

4(1 +
√

2) �
�r

)2
E
[

‖�‖4F
]

,
(

2(1 +
√

2)
)2

E
[

‖�‖2F
]

}

, (39)
where the last inequality is a special case of Jensen’s inequality [39] with the minimum of two linear functions as
a concave function. The fourth-order term on the RHS of (39) can be computed as

E
[

‖�‖4F
]

= E
[

(

m
∑

i=1

n
∑

j=1
Δ2ij

)2
]

=
∑

i,j,k,l
E
[

Δ2ijΔ
2
kl

]

= �4
∑

i,j,k,l
(1 + 2�ik�jl) = �4(m2n2 + 2mn). (40)

Substituting (31) and (40) back into (39), then taking the square root, we have
√

E
[

‖RX(�)‖2F
]

≤ min
{

4(1 +
√

2) �
�r

√

m2n2 + 2mn, 2(1 +
√

2)
√

mn
}

.

Substituting the bound in the last inequality and the equality in (31) into (38), we obtain the upper bound as

E
[

‖X̂ −X‖

2
F

]

≤ �2
(

√

r(m + n − r) + min
{

4(1 +
√

2) �
�r

√

m2n2 + 2mn, 2(1 +
√

2)
√

mn
}

)2

. (41)

Due to the nature of the bound given in (28), the bound in (41) is taken as the minimum between a component that
is linear in the norm of � and a component that is quadratic in the norm of �.
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Remark 5. Asymptotically as � → 0, all the ratios of the first-order approximation (31), the second-order approxi-
mation (36), and the upper bound (41) to the MSE of the noisy matrix (29) converge to r(m + n − r)∕mn. In general,
this ratio is less than or equal to 1, however, in low-rank scenarios it can be significantly smaller. This indicates the
TSVD estimator is effective in noise reduction when the noise is small, especially when the matrix X has low rank.
Remark 6. The upper bound in (41) attains the same value of the baseline �2mn when � = �2, where

�2 =
�r
(√

mn −
√

r(m + n − r)
)

4(1 +
√

2)
√

m2n2 + 2mn
, (42)

guaranteeing the superiority of the upper bound over the baseline in the case � < �2.
Remark 7. Let us define the �-knee point between two increasing functions of �, e.g., f (�) and g(�), as the point at
which f (�) = �g(�) (for � > 1). Then, the �-knee point between the upper bound (41) and the first-order approximation
(31) can be determined by

�1 =
�r(

√

� − 1)
√

r(m + n − r)

4(1 +
√

2)
√

m2n2 + 2mn
. (43)

In addition, the �-knee point between the second-order approximation (36) and the first-order approximation (31) is
given by

�3 =
√

(� − 1)r(m + n − r)
3(m − r)(n − r)‖X†

‖

2
F

> �1. (44)

Figure 1 demonstrates the aforementioned analysis on the performance of the TSVD-based estimator for matrix
denoising through a numerical experiment. Data generation. We generate a matrix X with m = 100, n = 80, and
r = 3 by (i) taking the product of two random matrices, whose entries are i.i.d. normally distributed (0, 1), of sizes
100 × 3 and 3 × 80, respectively; (ii) and dividing each entry of the obtained matrix by its Frobenius norm such that
the resulting matrix satisfies ‖X‖F = 1. In the experiment, we consider 51 values of � in the interval of [10−6, 100],
namely � ∈ {10−6, 10−5.88, 10−5.76,… , 100}. For each value of �, we compute the following quantities:

1. the empirical MSE of the TSVD-based estimator E[‖X̂ −X‖

2
F ] by averaging the quantity ‖r(X + �) −X‖

2
Fover 1000 i.i.d. instances of �,

2. the MSE of the noisy matrix given in (29),
3. the first-order approximation of the MSE of the TSVD-based estimator given in (31),
4. the second-order approximation of the MSE of the TSVD-based estimator given in (32),
5. the upper bound on the MSE of the TSVD-based estimator given in (41).

We display each of the aforementioned quantities as a function of � in Fig. 1. In addition, we calculate the points
corresponding to �1, �2 and �3 using (43), (42), and (44), respectively, with � = 1.1, and include them in Fig. 1.
Results and Analysis. It can be observed from the plot that the empirical MSE of the TSVD-based estimator (solid
blue) increases quadratically as a function of � (in the log-log scale, it appears as a straight line with slope equal to 2).
The first-order approximation (dash-dotted yellow) and the second-order approximation (dash-dotted purple) match
the empirical average well for � < �3 ≈ 10−2. In this range of �, all of the three aforementioned quantities are lower
than the MSE of the noisy matrix (solid red). On the other hand, the upper bound (solid green) holds tightly when
� < �1 ≈ 10−4, providing an efficient guarantee on the performance of the TSVD-based estimator for denoising
with the presence of small additive noises. However, as the noise variance increases, the upper bound appears loose,
exceeding the MSE of the noisy matrix when � > �2 ≈ 4 × 10−4. The bound is developed for the worst-case noise
scenario, in which the noise is adversarially selected to yield the largest perturbation error (see the proof of Theorem 3
in Appendix E) and not for the random noise case. Consequently, it is far more conservative, predicting a larger MSE
than the actualMSE of the TSVD-based estimator. Developing bounds for average-case scenario is a potential direction
for future research.
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Figure 1: The MSE of the TSVD-based estimator X̂ for matrix denoising as a function of �. The solid blue line
represents the empirical estimate of MSE of X̂, i.e., E[‖X̂ − X‖

2
F ]. The solid red line is the MSE of the noisy matrix,

i.e., E[‖X̃ − X‖

2
F ] = �2mn. The dash-dotted yellow line and the dash-dotted purple line represent the first-order and

second-order approximations of E[‖X̂ − X‖

2
F ], i.e., E[‖X̂1 − X‖

2
F ] and E[‖X̂2 − X‖

2
F ], respectively. The solid green line

is the upper bound on E[‖X̂ − X‖

2
F ] given in (41). The knee-points �1 and �3 represent the value of � for which the

upper-bound and the second-order approximation deviate from the first order approximation by more than 10%, obtained
by (43) and (44) with � = 1.1. The point �2 is the intersection between the upper bound and the MSE of the noisy matrix,
given by (42).

7. Conclusion
In this paper, we derived a first-order perturbation expansion for the singular value truncation. When the underlying

matrix has exact rank-r, we showed that the first-order approximation can be greatly simplified and further introduced
a simple expression of the second-order perturbation expansion for the r-TSVD. Next, we proposed an error bound on
the first-order approximation of the r-TSVD about a rank-rmatrix. Our bound is universal in the sense that it holds for
perturbation matrices with an arbitrary norm. Two open questions raised by our analysis are: (i) when the underlying
matrix has arbitrary rank, whether there exists an explicit expression for the second-order perturbation expansion of the
TSVD; (ii) and given the result in Theorem 1, whether it is possible to establish a global error bound on the first-order
approximation of the r-TSVD.
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A. Auxiliary lemmas
This section summarizes some trivial results that will be used regularly in our subsequent derivation. The proofs

of Lemmas 3-7 can be found in [40] - Chapter 5. The proof of Lemma 8 can be found in [41] - Chapter 2.
Lemma 3. Assume the same setting as in Definition 2. The following statements hold:

1. UT
1 U1 = V

T
1 V1 = Ir, U

T
2 U2 = Im−r, and V

T
2 V2 = In−r,
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2. UT
1 U2 = 0r×(m−r) and V

T
1 V2 = 0r×(n−r),

3. PU1PU2 = 0 and PV1PV2 = 0.

Furthermore, if X has rank r, then

1. PU2X = 0 and XPV2 = 0,

2. X = PU1X = XPV1 ,

3. X(X†)T = PU1 and X
TX† = PV1 .

Lemma 4. Assume the same setting as in Definition 2. The following statements hold:

1. r(X) = U1�1V T
1 = PU1X = XPV1 = PU1XPV1 ,

2. X − r(X) = U2�2V T
2 = PU2X = XPV2 = PU2XPV2 .

Lemma 5. For any matrices A and B with compatible dimensions, the following inequalities hold

‖AB‖2 ≤ ‖AB‖F ≤ min{‖A‖F ‖B‖2, ‖A‖2‖B‖F } ≤ ‖A‖F ‖B‖F .

Lemma 6. (Pythagoras theorem for Frobenius norm) For any matrices A and B such that tr(ATB) = 0, it holds that

‖A + B‖F =
√

‖A‖2F + ‖B‖2F .

The matrices A and B in this case are said to be orthogonal to each other.

Lemma 7. Let U be a semi-orthogonal matrix with orthonormal columns and PU = UUT . Then, for any matrices A
and B that have compatible dimensions with U , the followings hold

1. ‖UA‖2 = ‖A‖2 and ‖UA‖F = ‖A‖F ,

2. ‖BU‖2 = ‖BPU‖2 ≤ ‖B‖2 and ‖BU‖F = ‖BPU‖F ≤ ‖B‖F .

Lemma 8. For any matrices A, B, C , andD with compatible dimensions such that the matrix products are valid, the
following holds

1. (A⊗ B)(C ⊗D) = (AC)⊗ (BD),

2. vec(ABC) = (CT ⊗A) vec(B),

3. ‖A⊗ B‖F = ‖A‖F ‖B‖F ,

4. tr(A⊗ B) = tr(A) tr(B).

B. Proof of Theorem 1
Recall that in this proof, we consider a matrix X having rank greater than or equal to r. With a slight abuse of

notation, let us define RX(�) as follows:
RX(�) = r(X + �) −

(

r(X) + � − PU2�PV2
) (45)

=
(

r(X + �) − (X + �)
)

+
(

X − r(X)
)

+ PU2�PV2 . (46)
Since X̃ = X + �, applying Lemma 4 to (46) yields

RX(�) = −PŨ2X̃PṼ2 + PU2XPV2 + PU2�PV2
= −PŨ2X̃PṼ2 + PU2X̃PV2 .

Denote �PU2 = PŨ2 − PU2 and �PV2 = PṼ2 − PU2 . By rewriting PŨ2 = PU2 + �PU2 and PṼ2 = PV2 + �PV2 , we canfurther simplify the last equation as
RX(�) = −�PU2 X̃PV2 − PU2X̃�PV2 − �PU2 X̃�PV2 . (47)
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Lemma 9. The perturbations of singular subspaces satisfy

�PU2 = U1Q
TUT

2 + U2QU
T
1 +(‖�‖2F ), (48a)

�PV2 = −V1P
TV T

2 − V2PV T
1 +(‖�‖2F ). (48b)

The proof of Lemma 9 is given at the end of this section. From this lemma, it is clear that �PU2 and �PV2 are in the
order of ‖�‖F . Substituting X̃ = X + � into (47) and collecting second-order terms yield

RX(�) = −�PU2XPV2 − PU2X�PV2 +(‖�‖2F ). (49)
Substituting (48a) into the first term on the RHS of (49), we obtain

�PU2XPV2 =
(

U1QTUT
2 + U2QU

T
1
)

U2�2V T
2 +(‖�‖2F ).

Since UT
2 U2 = I and UT

1 U2 = 0, we further have
�PU2XPV2 = U1Q

T�2V T
2 +(‖�‖2F ). (50)

Similarly, the second term on the RHS of (49) can be represented as
PU2X�PV2 = −U2�2PV

T
1 +(‖�‖2F ). (51)

Substituting (50) and (51) back into (49), we have
RX(�) = −U1QT�2V T

2 + U2�2PV T
1 +(‖�‖2F ). (52)

Now we can vectorize (52) and apply Lemma 8 to obtain
vec

(

RX(�)
)

= (V2�T2 ⊗ U1) vec(−QT ) + (V1 ⊗ U2�2) vec(P ) +(‖�‖2F ). (53)
Let us now consider each term on the RHS of (53). From Proposition 3, it follows that

vec(−QT ) = (Im−r ⊗ �21 − �2�
T
2 ⊗ Ir)−1 vec(E12�T2 + �1E

T
21) +(‖�‖2F ). (54)

Replacing Eij = UT
i �Vj , for i, j ∈ {1, 2}, and using Lemma 8, (54) becomes

vec(−QT ) = (Im−r ⊗ �21 − �2�
T
2 ⊗ Ir)−1

(

(�2V T
2 ⊗ UT

1 ) vec(�) + (U
T
2 ⊗ �1V

T
1 ) vec(�

T )
)

+(‖�‖2F ). (55)
Since �1 and �2 are diagonal, so is (Im−r ⊗ �21 − �2�T2 ⊗ Ir)−1. The following lemma provides an insight into the
structure of this inversion.
Lemma 10. Let D = (Im−r ⊗ �21 − �2�

T
2 ⊗ Ir)−1. Then

D =
r
∑

i=1

m−r
∑

k=1
dik

(

em−rk (em−rk )T
)

⊗
(

eri (e
r
i )
T ),

where dik =
1

�2i −�
2
r+k

, for i = 1,… , r and k = 1,… , m − r.

The proof of Lemma 10 is given at the end of this section. Now using Lemma 10 and left-multiplying both sides of
(55) by (V2�T2 ⊗ U1), we obtain

(V2�T2 ⊗ U1) vec(−QT ) =
r
∑

i=1

m−r
∑

k=1
dik(V2�T2 ⊗ U1)

(

(

em−rk (em−rk )T
)

⊗
(

eri (e
r
i )
T )

)

(�2V T
2 ⊗ UT

1 ) vec(�)
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+
r
∑

i=1

m−r
∑

k=1
dik(V2�T2 ⊗ U1)

(

(

em−rk (em−rk )T
)

⊗
(

eri (e
r
i )
T )

)

(UT
2 ⊗ �1V

T
1 ) vec(�

T ) +(‖�‖2F ). (56)

Moreover, applying Lemma 8-1, we have

(V2�T2 ⊗ U1)
(

(

em−rk (em−rk )T
)

⊗
(

eri (e
r
i )
T )

)

(�2V T
2 ⊗ UT

1 ) =
(

V2�T2 e
m−r
k (em−rk )T�2V T

2
)

⊗
(

U1eri (e
r
i )
TUT

1
)

= �2r+k(vr+kv
T
r+k)⊗ (uiuTi ), (57)

and similarly,

(V2�T2 ⊗ U1)
(

(

em−rk (em−rk )T
)

⊗
(

eri (e
r
i )
T )

)

(UT
2 ⊗ �1V

T
1 ) = �i�r+k(vr+ku

T
r+k)⊗ (uivTi ). (58)

Substituting (57) and (58) back into (56) and performing a change of variable j = r + k, we obtain

(V2�T2 ⊗ U1) vec(−QT ) =
r
∑

i=1

m
∑

j=r+1

�2j
�2i − �

2
j

(vjvTj )⊗ (uiuTi ) vec(�)

+
r
∑

i=1

m
∑

j=r+1

�i�j
�2i − �

2
j

(vjuTj )⊗ (uivTi ) vec(�
T ) +(‖�‖2F ). (59)

Following a similar derivation, we also have

(V1 ⊗ U2�2) vec(P ) =
r
∑

i=1

m
∑

j=r+1

�2j
�2i − �

2
j

(vivTi )⊗ (ujuTj ) vec(�)

+
r
∑

i=1

m
∑

j=r+1

�i�j
�2i − �

2
j

(viuTi )⊗ (ujvTj ) vec(�
T ) +(‖�‖2F ). (60)

Substituting (59) and (60) back into (53) yields

vec
(

RX(�)
)

=
r
∑

i=1

m
∑

j=r+1

( �2j
�2i − �

2
j

(

(vjvTj )⊗ (uiuTi ) + (viv
T
i )⊗ (ujuTj )

)

vec(�)

+
�i�j

�2i − �
2
j

(

(vjuTj )⊗ (uivTi ) + (viu
T
i )⊗ (ujvTj )

)

vec(�T )
)

+(‖�‖2F ). (61)

Truncating the inner summation, with �j = 0 for j > n, and applying Lemma 8-2 to the RHS of (61), we obtain

RX(�) =
r
∑

i=1

n
∑

j=r+1

( �2j
�2i − �

2
j

(uiuTi �vjv
T
j + uju

T
j �viv

T
i ) +

�i�j
�2i − �

2
j

(uivTi �
T ujvTj + ujv

T
j �

T uivTi )
)

+(‖�‖2F ).

Our theorem now follows on the definition of RX(�) in (45).
B.1. Proof of Lemma 9

Using the fact from Proposition 2 that PŨ2 = PÛ2 , we can re-express the subspace difference as

�PU2 = PŨ2 − PU2 = PÛ2 − PU2 = Û2Û
T
2 − U2U

T
2 . (62)

Substituting (7b) into (62) yields
�PU2 = (U2 + U1Q

T )(Im−r +QQT )−1(UT
2 +QU

T
1 ) − U2U

T
2 . (63)
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SinceQ = (‖�‖F ) and (Im−r+QQT )−1 = Im−r−QQT (Im−r+QQT )−1 = Im−r+(‖�‖2F ), (63) can be simplified
by absorbing second-order terms:

�PU2 = (U2 + U1Q
T )(UT

2 +QU
T
1 ) − U2U

T
2 +(‖�‖2F )

= U1QTUT
2 + U2QU

T
1 + U1Q

TQUT
1 +(‖�‖2F )

= U1QTUT
2 + U2QU

T
1 +(‖�‖2F ).

The equation �PV2 = −V1P
TV T

2 − V2PV T
1 + (‖�‖2F ) can be proved by a similar derivation. Since Q and P are in

the order of ‖�‖F , so do �PU2 and �PV2 .
B.2. Proof of Lemma 10

Recall that

�21 =
⎡

⎢

⎢

⎣

�21 … 0
⋱

0 … �2r

⎤

⎥

⎥

⎦

∈ ℝr×r and �2�T2 =
⎡

⎢

⎢

⎣

�2r+1 … 0
⋱

0 … �2m

⎤

⎥

⎥

⎦

∈ ℝ(m−r)×(m−r).

By the definition of the Kronecker product, we have

Im−r ⊗ �21 − �2�
T
2 ⊗ Ir =

⎡

⎢

⎢

⎣

�21 − �
2
r+1Ir … 0r

⋱
0r … �21 − �

2
mIr

⎤

⎥

⎥

⎦

∈ ℝ(m−r)r×(m−r)r.

Therefore, we can invert this diagonal matrix by considering each of the r × r blocks:
D = (Im−r ⊗ �21 − �2�

T
2 ⊗ Ir)−1

=
⎡

⎢

⎢

⎣

(�21 − �
2
r+1Ir)

−1 … 0r
⋱

0r … (�21 − �
2
mIr)

−1

⎤

⎥

⎥

⎦

.

Now it is easy to verify that, for i = 1,… , r and k = 1,… , m− r, the i-th diagonal entry of the k-th diagonal block, is
dik = 1∕(�2i − �

2
r+k). Furthermore, since (em−rk (em−rk )T

)

⊗
(

eri (e
r
i )
T ) is a (m − r)r × (m − r)r matrix of all zeros but

the i-th diagonal entry of the k-th diagonal block is 1, we represent D as the sum of (m − r)r rank-1 matrices:

D =
r
∑

i=1

m−r
∑

k=1
dik

(

em−rk (em−rk )T
)

⊗
(

eri (e
r
i )
T ).

C. Proof of Theorem 2
By the definition of the r-TSVD in (2), we have
r(X̃) = PŨ1X̃PṼ1 . (64)

Since we assume X has exact rank r, the perturbed matrix can be represented as X̃ = X + � = U1�1V T
1 + �.

Substituting this back into (64) yields
r(X + �) = PŨ1 (U1�1V

T
1 + �)PṼ1 . (65)

Similar to the derivation of (63), we obtain PŨ1 = (U1−U2Q)(Ir+QTQ)−1(UT
1 −Q

TUT
2 ) and PṼ1 = (V1+V2P )(Ir+

P TP )−1(V T
1 + P TV T

2 ). Substituting the expressions of PŨ1 and PṼ1 back into (65), we obtain
r(X + �) = (U1 − U2Q)(Ir +QTQ)−1(UT

1 −Q
TUT

2 )(U1�1V
T
1 + �)

⋅ (V1 + V2P )(Ir + P TP )−1(V T
1 + P TV T

2 ). (66)
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By orthogonality, the product of three terms in the middle of the RHS of (66) can be expanded and simplified as
(UT

1 −Q
TUT

2 )(U1�1V
T
1 + �)(V1 + V2P ) = (�1 + E11) + (E12P −QTE21 −QTE22P ).

Therefore, (66) is equivalent to
r(X + �) = (U1 − U2Q)(Ir +QTQ)−1(�1 + E11)(Ir + P TP )−1(V T

1 + P TV T
2 )

+ (U1 − U2Q)(Ir +QTQ)−1(E12P −QTE21 −QTE22P )(Ir + P TP )−1(V T
1 + P TV T

2 ). (67)
Let us first focus on the first term on the RHS of (67). Similar to the result after (63), we have (Ir + QTQ)−1 =
Ir − (Ir +QTQ)−1QTQ and (Ir + P TP )−1 = Ir − P TP (Ir + P TP )−1, and hence

(U1 − U2Q)(Ir +QTQ)−1(�1 + E11)(Ir + P TP )−1

= (U1 − U2Q)
(

Ir − (Ir +QTQ)−1QTQ
)

(�1 + E11)
(

Ir − P TP (Ir + P TP )−1
)

(V T
1 + P TV T

2 )

= (U1 − U2Q)(�1 + E11)(V T
1 + P TV T

2 ) − (U1 − U2Q)(�1 + E11)P
TP (Ir + P TP )−1(V T

1 + P TV T
2 )

− (U1 − U2Q)(Ir +QTQ)−1QTQ(�1 + E11)(Ir + P TP )−1(V T
1 + P TV T

2 ). (68)
Recall thatX = U1�1V T

1 and E11 = UT
1 �V1. The product (U1 −U2Q)(�1 +E11)(V T

1 + P TV T
2 ) can be expanded as

(U1 − U2Q)(�1 + E11)(V T
1 + P TV T

2 )

= X + U1E11V T
1 + U1(�1 + E11)P TV T

2 − U2Q(�1 + E11)V T
1 − U2Q(�1 + E11)P TV T

2 . (69)
In order to make up the first-order terms that involve �, we need to decompose the perturbation into 4 components
corresponding to different subspaces as follows. Since PU1 + PU2 = Im and PV1 + PV2 = In, we have

� = PU1�PV1 + PU2�PV1 + PU1�PV2 + PU2�PV2 . (70)
Reorganizing terms in (70) as

PU1�PV1 = � − PU2�PV2 − PU1�PV2 − PU2�PV1 ,

and using the definition of E in (4), we further have
U1E11V T

1 = � − PU2�PV2 − U1E12V
T
2 − U2E21V T

1 . (71)
Thus, substituting (71) back into (69) and rearranging terms yield

(U1 − U2Q)(�1 + E11)(V T
1 + P TV T

2 ) = X + � − PU2�PV2 + U1
(

(�1 + E11)P T − E12
)

V T
2

− U2
(

Q(�1 + E11) + E21
)

V T
1 − U2Q(�1 + E11)P TV T

2 . (72)
Substituting (68) and (72) back into (67), we obtain

r(X + �) = X + � − PU2�PV2
+ U1

(

(�1 + E11)P T − E12
)

V T
2 − U2

(

Q(�1 + E11) + E21
)

V T
1 − U2Q(�1 + E11)P TV T

2

+ (U1 − U2Q)(Ir +QTQ)−1
(

−(Ir +QTQ)(�1 + E11)P TP +QTQ(�1 + E11)

+ (E12P −QTE21 −QTE22P )
)

(Ir + P TP )−1(V T
1 + P TV T

2 ). (73)
Applying (6), we have

U1
(

(�1 + E11)P T − E12
)

V T
2 − U2

(

Q(�1 + E11) + E21
)

V T
1 − U2Q(�1 + E11)P TV T

2

= U1QT (E21P T − E22)V T
2 + U2(E22 −QE12)PV T

1 + U2(E21 + E22P +QE12P )P TV T
2 , (74)
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and
−(Ir +QTQ)(�1 + E11)P TP +QTQ(�1 + E11) + (E12P −QTE21 −QTE22P )

=
(

E12P − (�1 + E11)P TP
)

−
(

QTE21 +QTQ(�1 + E11)
)

+QT (E22 +Q(�1 + E11)P T
)

P
= (QTE22 −QTE21P T )P −QT (E22P +QE12P ) +QT (E22 +Q(�1 + E11)P T

)

P . (75)
Substituting (74) and (75) back into (73), we obtain

r(X + �) = X + � − PU2�PV2
+ U1QT (E21P T − E22)V T

2 + U2(E22 −QE12)PV T
1 + U2(E21 + E22P +QE12P )P TV T

2

+ (U1 − U2Q)(Ir +QTQ)−1 ⋅
(

(QTE22 −QTE21P T )P −QT (E22P +QE12P )

+QT (E22 +Q(�1 + E11)P T
)

P
)

(Ir + P TP )−1(V T
1 + P TV T

2 ). (76)

SinceQ,P ,E11,E12,E21, and E22 are first-order, and (Ir +QTQ)−1, (Ir +P TP )−1 are zero-order in terms of ‖�‖F ,we can collect all the third-order terms on the RHS of (76) and obtain
r(X + �) = X + � − PU2�PV2 − U1Q

TE22V T
2 + U2E22PV T

1 + U2E21P TV T
2 +(‖�‖3F ). (77)

Finally, the matrices Q and P in the second-order terms is eliminated by the following variant of (6):
Q = −

(

E21 +QE21P − E22P −QE11
)

�−11 ,
P T = �−11 (E12 +Q

TE21P T −QTE22 − E11P T ).

The substitution and collection of third-order terms on the RHS of (77) yield
r(X + �) = X + � − PU2�PV2 + U1�

−1
1 E

T
21E22V

T
2 + U2E22ET12�

−1
1 V

T
1 + U2E21�−11 E12V

T
2 +(‖�‖3F )

= X + � − PU2�PV2 + U1�
−1
1 V

T
1 �

TU2UT
2 �V2V

T
2

+ U2UT
2 �V2V

T
2 �

TU1�−11 V
T
1 + U2UT

2 �V1�
−1
1 U

T
1 �V2V

T
2 +(‖�‖3F )

= X + � − PU2�PV2 +X
†�TPU2�PV2 + PU2�PV2�

TX† + PU2�(X
†)T�PV2 +(‖�‖3F ).

This completes our proof of the theorem.

D. Proof of Lemma 1
By the triangle inequality, we have
‖r(X + �) − (X + �) + PU2�PV2‖F ≤ ‖r(X + �) − (X + �)‖F + ‖PU2�PV2‖F . (78)

The first term on the RHS of (78) can be bounded as follows. Since X̃ = X + �, applying the norm absolute homo-
geneity property yields

‖r(X + �) − (X + �)‖F = ‖r(X̃) − X̃‖F = ‖X̃ − r(X̃)‖F . (79)
From Lemmas 4 and 7, we obtain

‖X̃ − r(X̃)‖F = ‖Ũ2�̃2Ṽ T
2 ‖F = ‖�̃2‖F . (80)

Since �̃2 is a submatrix of �̃ containing n − r small singular values of X̃ in the diagonal, it holds that
‖�̃2‖F ≤ ‖�̃‖F = ‖X̃‖F . (81)

Vu et. al.: Preprint submitted to Elsevier Page 21 of 31



Perturbation expansions and error bounds for TSVD

Additionally, using the triangle inequality we can bound ‖X̃‖F by
‖X̃‖F = ‖X + �‖F ≤ ‖X‖F + ‖�‖F . (82)

From (79), (80), (81), and (82), we have
‖r(X + �) − (X + �)‖F ≤ ‖X‖F + ‖�‖F . (83)

On the other hand, it follows from Lemma 7 that the second term on the RHS of (78) satisfies
‖PU2�PV2‖F ≤ ‖�‖F . (84)

Substituting inequalities (83) and (84) into (78) completes the proof of the lemma.

E. Proof of Theorem 3
The following proof is developed for the case of a rank-r matrix X. We first derive the proof of (27) and then use

this result to prove (28).
E.1. Proof of the bound in (27)

Our goal is to prove that the residual in (26) is always bounded by
‖RX(�)‖F ≤ c

�r
‖�‖2F , for some 1 + 1∕

√

2 ≤ c ≤ 4(1 +
√

2).

Let us begin with the upper bound on c by showing that

‖RX(�)‖F ≤
4(1 +

√

2)
�r

‖�‖2F . (85)

Rearranging terms in (26) and replacing X + � by X̃, we have
RX(�) = r(X̃) − X̃ + PU2�PV2 . (86)

Using the singular subspace decomposition in Definition 2 with descending order of singular values �̃1 ≥ �̃2… ≥ �̃n,let us decompose X̃ as follows
X̃ = Ũ1�̃1Ṽ T

1 + Ũ2�̃2Ṽ T
2 . (87)

Since in this theorem we consider perturbations of any magnitude, X̃ can take any value including the case in which
�̃r = �̃r+1 and the decomposition (87) may not be unique. Nevertheless, the proof holds for any valid choice of singular
subspace decomposition. From such a choice in (87), r(X̃) is well-defined as: r(X̃) = Ũ1�̃1Ṽ T

1 . Substituting
X̃ = X + � into (47) and using the fact that PU2X = 0 and XPV2 = 0, we obtain

RX(�) = −�PU2X�PV2 − PU2��PV2 − �PU2�PV2 − �PU2��PV2
= −�PU2X�PV2 − PU2��PV2 − �PU2�PṼ2 . (88)

Here, from Lemma 3, we can replace X = X(X†)TX in the first term on the RHS of (88) and obtain
RX(�) = −(�PU2X)(X

†)T (X�PV2 ) − PU2��PV2 − �PU2�PṼ2 . (89)
Taking the Frobenius norm and using its absolute homogeneity property, (89) becomes

‖RX(�)‖F = ‖(�PU2X)(X
†)T (X�PV2 ) + PU2��PV2 + �PU2�PṼ2‖F .

By the triangle inequality, the norm of RX(�) is then bounded by
‖RX(�)‖F ≤ ‖(�PU2X)(X

†)T (X�PV2 )‖F + ‖PU2��PV2‖F + ‖�PU2�PṼ2‖F . (90)
Let us proceed to upper-bound ‖RX(�)‖F by finding the upper bounds for each of the three terms on the RHS of (90)
with respect to ‖�‖2F . Our proof technique utilizes the following lemmas.
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Lemma 11. max
{

‖�PU2X‖F , ‖X�PV2‖F
}

≤ 2‖�‖F .

Lemma 12. max
{

‖PU2�PU2�‖F , ‖��PV2PV2‖F
}

≤ 2
�r
‖�‖2F .

The proofs of Lemmas 11 and 12 are given at the end of this subsection. Let us proceed with the task of bounding the
first term in (90). Applying Lemma 5 twice and using the fact that ‖X†

‖2 = 1∕�r, we have

‖(�PU2X)(X
†)T (X�PV2 )‖F ≤ 1

�r
‖�PU2X‖F ‖X�PV2‖F . (91)

By Lemma 11, the terms ‖�PU2X‖F and ‖X�PV2‖F can each be bounded by 2‖�‖F . Applying the upper bounds on
the RHS of (91), we obtain the following bound on the first term in (90):

‖(�PU2X)(X
†)T (X�PV2 )‖F ≤ 4

�r
‖�‖2F . (92)

Next, we shall bound the second term in (90), i.e., ‖PU2��PV2‖F . From Lemma 7, we have

‖PU2��PV2‖F ≤ ‖��PV2‖F . (93)
Since PV1 + PV2 = In, the matrix on the RHS of (93) can be expanded as the sum of two orthogonal terms:

��PV2 = ��PV2 (PV1 + PV2 ) = ��PV2PV1 + ��PV2PV2 .

Notice that PV1 and PV2 are orthogonal. By Lemma 6, we have
‖��PV2‖

2
F = ‖��PV2PV1‖

2
F + ‖��PV2PV2‖

2
F

= ‖��PV2X
TX†

‖

2
F + ‖��PV2PV2‖

2
F (since PV1 = XTX†)

= ‖�(X�PV2 )
TX†

‖

2
F + ‖��PV2PV2‖

2
F . (94)

Each term on the RHS of (94) can be bounded as follows. Applying Lemma 5 twice, we initially bound the first term
on the RHS of (94) as follows:

‖�(X�PV2 )
TX†

‖F ≤ 1
�r
‖�‖F ‖X�PV2‖F .

By Lemma 11, we upper-bound ‖X�PV2‖F by 2‖�‖F and obtain the bound on the first term on the RHS of (94):

‖�(X�PV2 )
TX†

‖F ≤ 2
�r
‖�‖2F . (95)

To bound the second term on the RHS of (94), we apply Lemma 12 and obtain

‖��PV2PV2‖
2
F ≤ 4

�2r
‖�‖4F . (96)

Substituting the bounds from (95) and (96) back into the RHS of (94), we have

‖��PV2‖
2
F ≤

( 2
�r
‖�‖2F

)2
+ 4
�2r

‖�‖4F =
8
�2r

‖�‖4F .

Taking the square root of the last result and substituting it back to (93) yields

‖PU2��PV2‖F ≤
2
√

2
�r

‖�‖2F . (97)
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This offers a bound on the second term on the RHS of (90). Similarly, we bound the third term on the RHS of (90) by

‖�PU2�PṼ2‖F ≤
2
√

2
�r

‖�‖2F . (98)

Finally, summing up (92), (97), and (98), and substituting back into (90), we obtain (85) and thereby completes the
first part of the proof.

For the second part of the proof, we show that c ≥ 1 + 1∕√2 by constructing a perturbation � such that the ratio
‖RX(�)‖F ∕‖�‖2F approaches (1 + 1∕√2)∕�r. Consider perturbations of form

� = (� − �r − �)urvTr + �ur+1v
T
r+1, for 0 < � < � < �r. (99)

Since urvTr and ur+1vTr+1 are orthogonal, we can compute the norm of � using Lemma 6:
‖�‖2F = (� − �r − �)

2
‖urvTr ‖

2
F + �

2
‖ur+1vTr+1‖

2
F

= (� − �r − �)2 + �2, (100)
where the second equality uses urvTr = ur⊗ vTr and Lemma 8-3. Using the SVD ofX and the definition of � in (99),
we have

X + � =
r
∑

i=1
�iuivTi + (� − �r − �)urv

T
r + �ur+1v

T
r+1

=
r−1
∑

i=1
�iuivTi + (� − �)urv

T
r + �ur+1v

T
r+1. (101)

After perturbation, the r-th singular value ofX is changed from �r to �−� and the r+1-th changes from 0 to �, therebymaking the singular value corresponding to ur+1vTr+1 larger than the singular value associated with urvTr . Thus, the
r-TSVD of X + � is given by

r(X + �) =
r−1
∑

i=1
�iuivTi + �ur+1v

T
r+1. (102)

On the other hand, since PU2 =
∑m
i=r+1 uiu

T
i and PV2 =

∑n
i=r+1 viv

T
i , we have

PU2�PV2 =
(

m
∑

i=r+1
uiuTi

)(

(� − �r − �)urvTr + �ur+1v
T
r+1

)(

n
∑

i=r+1
vivTi

)

= �ur+1vTr+1, (103)

where the second equality stems from the fact that

uTi uj = v
T
i vj =

{

1 if i = j,
0 if i ≠ j.

Substituting (101), (102), and (103) into (86), we obtain

RX(�) =
(r−1
∑

i=1
�iuivTi + �ur+1v

T
r+1

)

−
(r−1
∑

i=1
�iuivTi + (� − �)urv

T
r + �ur+1v

T
r+1

)

+ �ur+1vTr+1

= −(� − �)urvTr + �ur+1v
T
r+1.

Similar to (100), one can compute the norm of the residual by
‖RX(�)‖F =

√

(� − �)2 + �2. (104)
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From (100) and (104), we have
‖RX(�)‖F

‖�‖2F
=

√

(� − �)2 + �2

(�r + � − �)2 + �2
.

Now maximizing over � while taking � to 0 gives us a lower bound on c:
c
�r
= sup
�∈ℝm×n

‖RX(�)‖F
‖�‖2F

≥ max
0<�<�r

lim
�→0+

√

(� − �)2 + �2

(�r + � − �)2 + �2

= max
0<�<�r

�
√

2
(�r − �)2 + �2

. (105)

The maximization can be obtained at � = �r∕
√

2. Therefore, substituting back into (105) yields c ≥ 1 + 1∕√2. This
completes our proof of the first half of Theorem 3. We recall from Remark 3 that we conjecture the structure of �
given in (99) yields the maximizer of ‖RX(�)‖F ∕‖�‖2F .
E.1.1. Proof of Lemma 11

Let us rewrite �PU2X = PŨ2X − PU2X. Since PU2X = 0, we obtain

�PU2X = PŨ2X (106)
= PŨ2 (X̃ − �) (since X̃ = X + �)
= Ũ2ŨT

2 X̃ − PŨ2�.

Substituting X̃ = Ũ1�̃1Ṽ T
1 + Ũ2�̃2Ṽ T

2 yields
�PU2X = Ũ2ŨT

2
(

Ũ1�̃1Ṽ T
1 + Ũ2�̃2Ṽ T

2
)

− PŨ2�

= Ũ2�̃2Ṽ T
2 − PŨ2�,

where in the last equality we use the fact that ŨT
2 Ũ1 = 0 and ŨT

2 Ũ2 = Im. Therefore,
‖�PU2X‖F = ‖Ũ2�̃2Ṽ T

2 − PŨ2�‖F . (107)
By the triangle inequality and the absolute homogeneity, (107) implies

‖�PU2X‖F ≤ ‖Ũ2�̃2Ṽ T
2 ‖F + ‖PŨ2�‖F . (108)

We shall bound each term on the RHS of (108) as follows. First, using Lemma 7, we can remove the semi-orthogonal
matrices from within the Frobenius norm without changing the value of the norm:

‖Ũ2�̃2Ṽ T
2 ‖F = ‖�̃2Ṽ T

2 ‖F = ‖�̃2‖F .

Since �2 = 0, we further obtain
‖Ũ2�̃2Ṽ T

2 ‖F = ‖�̃2 − �2‖F . (109)
In addition, recall that �̃2 and �2 are sub-matrices of �̃ and �, respectively. Thus,

‖�̃2 − �2‖F ≤ ‖�̃ − �‖F . (110)
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Moreover, by Mirsky’s inequality in Proposition 1, we have

‖�̃ − �‖F =

√

√

√

√

n
∑

i=1
(�̃i − �i)2 ≤ ‖�‖F . (111)

From (109), (110), and (111), it follows that
‖Ũ2�̃2Ṽ T

2 ‖F ≤ ‖�‖F . (112)
Next, the second term on the RHS of (108), by Lemma 7, is bounded by

‖PŨ2�‖F ≤ ‖�‖F . (113)
Summing up (112) and (113), and combining the resulting inequality with (108), we conclude that

‖�PU2X‖F ≤ 2‖�‖F .

The proof of ‖X�PV2‖F ≤ 2‖�‖F follows a similar derivation.
E.1.2. Proof of Lemma 12

In this subsection, we shall show that ‖PU2�PU2�‖F ≤ 2
�r
‖�‖2F . The proof of ‖��PV2PV2‖F ≤ 2

�r
‖�‖2F can be

derived similarly. Since Definition 3 implies �PU2 = PŨ2 − PU2 = PU1 − PŨ1 , we have

PU2�PU2� = PU2 (PU1 − PŨ1 )�

= −PU2PŨ1�, (114)
where the second equality is due to PU2PU1 = 0 (see Lemma 3). It is now sufficient to bound the norm of PU2PŨ1�
by 2

�r
‖�‖2F . Let us consider two cases:

• If ‖�‖2 ≥ �r∕2, then applying Lemma 7-2 twice yields
‖PU2PŨ1�‖F ≤ ‖�‖F . (115)

Since ‖�‖F ≥ ‖�‖2 ≥ �r∕2, multiplying both sides by 2
�r
‖�‖F yields

‖�‖F ≤ 2
�r
‖�‖2F . (116)

From (115) and (116), we obtain ‖PU2PŨ1�‖F ≤ 2
�r
‖�‖2F .

• If ‖�‖2 < �r∕2, we need to use a different approach as follows. First, from Lemma 5, we have
‖PU2PŨ1�‖F ≤ ‖PU2PŨ1‖2‖�‖F . (117)

Let us examine the product PU2PŨ1 . Let X̃1 = Ũ1�̃1Ṽ T
1 and X̃2 = X̃ − X̃1. From Weyl’s inequality [11], we

have
|

|

�̃i − �i|| ≤ ‖�‖2 <
�r
2

for i = 1,… , n.

Thus, for any 1 ≤ i ≤ r, it holds that

�̃i > �i −
�r
2

≥ �r −
�r
2
=
�r
2
> 0. (118)
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Therefore, �̃1 = diag(�̃1,… , �̃r) is invertible. We can now denote the pseudo inverse of X̃1 by X̃†
1 = Ũ1�̃

−1
1 Ṽ

T
1 .

We have
PU2PŨ1 = PU2X̃1(X̃

†
1 )
T (since PŨ1 = X̃1(X̃†

1 )
T )

= PU2 (X̃ − X̃2)(X̃
†
1 )
T

= PU2X̃(X̃
†
1 )
T (since X̃2(X̃†

1 )
T = 0)

= PU2 (X + �)(X̃†
1 )
T

= PU2�(X̃
†
1 )
T . (since PU2X = 0) (119)

On the other hand, applying Lemmas 7 and 5, and the fact that ‖X†
‖2 = 1∕�r, we obtain

‖PU2�(X̃
†
1 )
T
‖F ≤ 1

�̃r
‖�‖F . (120)

From (118), we can bound �̃r by:

�̃r > �r −
�r
2
=
�r
2
. (121)

From (119), (120), and (121), we obtain

‖PU2PŨ1‖F = ‖PU2�(X̃
†
1 )
T
‖F ≤ 1

�̃r
‖�‖F <

2
�r
‖�‖F . (122)

Finally, substituting (122) back into (117) immediately yields ‖PU2PŨ1�‖F < 2
�r
‖�‖2F .

Since in both cases ‖PU2PŨ1�‖F ≤ 2
�r
‖�‖2F , we conclude from (114) that ‖PU2�PU2�‖F ≤ 2

�r
‖�‖2F for any �.

E.2. Proof of the bound in (28)
Taking Frobenius norm on both sides of equation (88) and using its absolute homogeneity property, we obtain:
‖RX(�)‖ = ‖�PU2X�PV2 + PU2��PV2 + �PU2�PṼ2‖. (123)

Applying the triangle inequality to the RHS of (123), we have
‖RX(�)‖F ≤ ‖�PU2X�PV2‖F + ‖PU2��PV2‖F + ‖�PU2�PṼ2‖F . (124)

To bound the RHS of (124), we proceed by bounding each of the terms on the RHS. The first term on the RHS of (124)
can be bounded as follows. From (106), we have �PU2X�PV2 = PŨ2X�PV2 . Using Lemmas 7 and 11, it follows that

‖�PU2X�PV2‖F = ‖PŨ2X�PV2‖F
≤ ‖X�PV2‖F
≤ 2‖�‖F . (125)

Next, the second term on the RHS of (124) can be rewritten as the sum of two orthogonal components
PU2��PV2 = PU2��PV2PV1 + PU2��PV2PV2 .

By Lemma 6, we have

‖PU2��PV2‖F =
√

‖PU2��PV2PV1‖
2
F + ‖PU2��PV2PV2‖

2
F . (126)
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On the one hand, we consider the first term on the RHS of (126). Since
�PV2PV1 = (PṼ2 − PV2 )PV1

= PṼ2PV1 , (by Lemma 3)
we obtain

‖PU2��PV2PV1‖F = ‖PU2�PṼ2PV1‖F . (127)
Applying Lemma 7 to the RHS of (127) in order to eliminate the three projection matrices, we obtain

‖PU2��PV2PV1‖F ≤ ‖�‖F . (128)
Similarly, we have

‖PU2��PV2PV2‖F ≤ ‖�‖F . (129)
Substituting (128), and (129) back into (126), we have

‖PU2��PV2‖F ≤
√

2‖�‖F . (130)
Similarly, we also obtain

‖�PU2�PṼ2‖F ≤
√

2‖�‖F . (131)
Substituting (125), (130), and (131) back into (124), we obtain

‖RX(�)‖F ≤ 2(1 +
√

2)‖�‖F . (132)
The proof of (28) is concluded by taking the minimum between the bounds in (132) and (27).

F. Proof of Theorem 4
Let us denote
R2X(�) = X†�TPU2�PV2 + PU2�PV2�

TX† + PU2�(X
†)T�PV2 .

It is straightforward to verify from (25) that RX(�) = R2X(�) +(‖�‖3F ). Thus,

lim
�→0+

sup
‖�‖F=�

‖RX(�) −R2X(�)‖F
‖�‖2F

= 0. (133)

Lemma 13. Let f and g be some bounded real-valued functions defined on the set . Then it holds that

|

|

|

|

|

sup
x∈

f (x) − sup
x∈

g(x)
|

|

|

|

|

≤ sup
x∈

|f (x) − g(x)| .

Applying Lemma 13 to (133), we obtain
|

|

|

|

|

sup
‖�‖F=�

‖RX(�)‖F
‖�‖2F

− sup
‖�‖F=�

‖R2X(�)‖F
‖�‖2F

|

|

|

|

|

≤ sup
‖�‖F=�

|

|

|

|

|

‖RX(�)‖F − ‖R2X(�)‖F
‖�‖2F

|

|

|

|

|

. (134)

On the other hand, by the triangle inequality, we have
|

|

‖RX(�)‖F − ‖R2X(�)‖F || ≤ ‖RX(�) −R2X(�)‖F . (135)

Vu et. al.: Preprint submitted to Elsevier Page 28 of 31



Perturbation expansions and error bounds for TSVD

From (134) and (135), it holds that
|

|

|

|

|

sup
‖�‖F=�

‖RX(�)‖F
‖�‖2F

− sup
‖�‖F=�

‖R2X(�)‖F
‖�‖2F

|

|

|

|

|

≤ sup
‖�‖F=�

|

|

|

|

|

‖RX(�) −R2X(�)‖F
‖�‖2F

|

|

|

|

|

. (136)

Thus, taking both sides of (136) to the limit � → 0 and rearranging terms yield

lim
�→0+

sup
‖�‖F=�

‖RX(�)‖F
‖�‖2F

= lim
�→0+

sup
‖�‖F=�

‖R2X(�)‖F
‖�‖2F

.

It now is sufficient to show that

lim
�→0+

sup
‖�‖F=�

‖R2X(�)‖F
‖�‖2F

= 1

�r
√

3
. (137)

Indeed, due to the orthogonality among the addends, we have
‖R2X(�)‖2F = ‖X†�TPU2�PV2 + PU2�PV2�

TX† + PU2�(X
†)T�PV2‖

2
F

= ‖X†�TPU2�PV2‖
2
F + ‖PU2�PV2�

TX†
‖

2
F + ‖PU2�(X

†)T�PV2‖
2
F . (138)

Using the definition of E in (4), (138) can be represented as
‖R2X(�)‖2F = ‖U1�−11 E

T
21E22V

T
2 ‖

2
F + ‖U2E22ET12�

−1
1 V

T
1 ‖

2
F + ‖U2E21�−11 E12V

T
2 ‖

2
F

= ‖�−11 E
T
21E22‖

2
F + ‖E22ET12�

−1
1 ‖

2
F + ‖E21�−11 E12‖

2
F , (139)

where the second equality stems from Lemma 7. Using Lemma 5 and the fact that ‖�−11 ‖2 = 1∕�r, we can bound the
RHS of (139) by

‖R2X(�)‖2F ≤ 1
�2r

(

‖E21‖2F ‖E22‖
2
F + ‖E22‖2F ‖E12‖

2
F + ‖E12‖2F ‖E21‖

2
F

)

. (140)

Lemma 14 (Chebyshev’s sum inequality [39]). For any a, b, c ∈ ℝ, we have

3(ab + bc + ca) ≤ (a + b + c)2.

Applying Lemma 14 to (140) with a = ‖E21‖2F , b = ‖E22‖2F and c = ‖E12‖2F , we obtain

‖R2X(�)‖2F ≤ 1
�2r

(

‖E21‖2F + ‖E22‖2F + ‖E12‖2F
)2

3

≤

(

‖E11‖2F + ‖E12‖2F + ‖E21‖2F + ‖E22‖2F
)2

3�2r
=

‖E‖4F
3�2r

=
‖�‖4F
3�2r

, (141)

where the last equation stems from ‖E‖F = ‖UT�V ‖F = ‖�‖F . From (141), taking the square root and then taking
the supremum yield

sup
‖�‖F=�

‖R2X(�)‖F ≤
‖�‖2F
�r
√

3
. (142)

To show that (142) implies (137), we describe a particular choice of � such that the inequality holds. Let us choose
�(�) ≜ �

√

3

(

urvTr+1 + ur+1v
T
r + ur+1v

T
r+1

)

,
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where ur, ur+1, vr, and vr+1 are the corresponding left and right singular vectors ofX. Similar to (100), one can verify
that ‖�(�)‖F = �. In addition, from Proposition 2, we have

E12 = UT
1 �(�)V2 =

�
√

3
err(e

n−r
1 )T , E21 = UT

2 �(�)V1 =
�
√

3
em−r1 (err)

T , E22 = UT
2 �(�)V2 =

�
√

3
em−r1 (en−r1 )T .

(143)
Substituting (143) back into (139) yields

‖R2X
(

�(�)
)

‖

2
F

= ‖

�2

3
�−11 e

r
r(e

m−r
1 )T em−r1 (en−r1 )T ‖2F + ‖

�2

3
em−r1 (en−r1 )T en−r1 (err)

T�−11 ‖

2
F + ‖

�2

3
em−r1 eTr �

−1
1 er(e

n−r
1 )T ‖2F

= �4

9

(

1
�2r
+ 1
�2r
+ 1
�2r

)

=
‖�‖4F
3�2r

. (since ‖�(�)‖F = �)

Therefore, the equality in (142) holds when � = �(�), for any � > 0. This completes our proof of the theorem.
F.1. Proof of Lemma 13

Since f (x) − g(x) ≤ |f (x) − g(x)|, we have f (x) ≤ |f (x) − g(x)| + g(x). Taking the supremum yields

sup
x∈

f (x) ≤ sup
x∈

{

|f (x) − g(x)| + g(x)
}

≤ sup
x∈

|f (x) − g(x)| + sup
x∈

g(x).

Thus, we have
sup
x∈

f (x) − sup
x∈

g(x) ≤ sup
x∈

|f (x) − g(x)| . (144)

Changing the roles of f and g, we also obtain
sup
x∈

g(x) − sup
x∈

f (x) ≤ sup
x∈

|f (x) − g(x)| . (145)

Our inequality follows on combining (144) and (145).
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